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Review

Polychlorinated biphenyls (PCBs) are syn­
thetic organochlorine compounds that were 
produced large scale from the early 1930s. 
Because of their unique physical and chemical 
properties, they were used largely in indus­
try, notably as capacitor and transformer oils, 
hydraulic fluids, lubricating oils, and in plasti­
cizers (Brinkman and De Kok 1980). Toward 
the end of the 1970s, their persistence in the 
environment was recognized, and their pro­
duction was banned in most industrialized 
countries. More than 20 years after the prohi­
bition of their production in North America, 
PCBs were still detectable in the environment 
because of inadvertent spills, careless disposal, 
their chemical stability, and resistance to bio­
degradation (Safe 1994).

Currently, one of the major nonaccidental 
sources of exposure to PCBs is fish consump­
tion (Schwartz et al. 1983). Concentrations 
of PCBs are particularly high in predatory 
species, because their long half-life and strong 
lipophilicity cause their bioamplification in 
the food chain (Dewailly et al. 1993; Jensen 
1987). PCB exposure in young children 
occurs first during prenatal development via 
placental transfer and then after birth from 
breast-feeding (Masuda et al. 1978; Patandin 
et  al. 1997) and through contaminated 
food intake. Fetuses, infants, and children 
are especially vulnerable to environmental 

contaminants, more so than adults (Chance 
and Harmsen 1998), because of physiologic, 
anatomic, and behavioral features associated 
with development (e.g., fast brain growth 
and underdeveloped immune system).

The developmental neurotoxicity of PCBs 
was first recognized after large-scale poison­
ing episodes in Japan in 1968 and in Taiwan 
in 1979. The poisoning was associated with 
the intake of rice oil contaminated by PCB 
during production processes. Thousands of 
people displayed clinical signs of intoxication 
(Hsu et al. 1985). Children exposed in utero, 
whose mothers ingested contaminated rice oil 
prior to or during pregnancy, were the most 
affected. Many of them presented growth 
retardation, nail malformations, delays in 
cognitive development, and behavioral prob­
lems (Guo et al. 2004). Since these poisoning 
episodes, birth cohort studies to identify the 
effects of prenatal and perinatal exposure to 
background levels of PCBs from environ­
mental sources on child cognition have been 
conducted in various countries. These studies 
usually reported associations between bio­
logic markers of PCB exposure and child 
performance on various neuropsychological 
tests. Although most of these results have 
been summarized elsewhere (Schantz et al. 
2003), no integrative synthesis aimed at por­
traying a profile of cognitive impairments 

from these results has been published yet. 
Earlier reports compared results by focusing 
on methodologic aspects such as exposure 
measurement. Albeit important and quite 
pertinent, these comparisons did not offer a 
comprehensive and detailed profile of specific 
assessed outcomes. Because of inconsistency 
among studies, some reviewers recently con­
cluded that the effects of prenatal exposure 
to background levels of PCBs on child cogni­
tion are still not clearly established (Cicchetti 
et al. 2004; Ross 2004). Actually, it may well 
be that PCB exposure affects only certain 
cognitive functions rather than all aspects of 
cognitive functioning. Because neuropsycho­
logical assessment differs from one study to 
the other, part of the apparent inconsistency 
may result from the absence of theory-based 
comparisons between the cognitive outcomes 
of the different studies.

The main goal of the present literature 
review is to determine whether a distinctive 
cognitive profile associated with prenatal PCB 
exposure from environmental sources emerges 
from the studies conducted to date and if it 
does, to characterize it. Implications for future 
studies, notably in the selection of neuro­
psychological tests, will then be discussed. 

Methods
We searched the PubMed database (http://​
www.ncbi.nlm.nih.gov/sites/entrez?​db=​
pubmed) for articles published up to June 
2008. We included longitudinal prospec­
tive birth cohort studies with biologic mark­
ers of prenatal PCB exposure and indicators 
of cognition from infancy to childhood, 
and we report results pertaining to associa­
tions between PCB exposure and cognition. 
Associations between PCB exposure and cog­
nition were considered statistically significant 
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at p < 0.05. Significant results that were asso­
ciated with a moderating variable were noted. 
The strengths and limitations of each study 
were considered in the cognitive neuropsy­
chological analysis of effects. Inconsistencies 
between cohorts thought to be attributable 
to unique influences associated with a specific 
study are noted. 

We included nine birth cohort studies on 
the effects of prenatal PCB exposure. Some 
particularities of these studies are summarized 
in Table 1. In all tables studies are presented 
in ascending order of severity of exposure. 
Because the laboratory procedures and types 
of specimens used for PCB exposure analysis 
varied across studies, the severity of exposure 
is estimated from the median PCB congener 
no. 153 (PCB‑153) levels in maternal serum, 
based on the work of Longnecker and col­
leagues (2003). Selected studies were con­
ducted between 1959 and 2008 in North 
America, Northern Europe, and Japan. The 
most frequent source of exposure was sea­
food consumption. In the following section 
we briefly describe these cohort studies in 
chronological order of publication.

North Carolina. The North Carolina Breast 
Milk and Formula Project, initiated in 1978 in 
the Raleigh–Durham, North Carolina, USA, 
area was designed to evaluate the morbidity 
linked to PCB and dichloroethylene exposure 
in breast milk (Rogan et al. 1986a). PCB expo­
sure was assumed to come from background 
levels in the general food supply rather than 
from specific dietary habits. Biologic samples 
from cord and maternal blood, breast milk, 
and placenta were obtained. More than 800 
children were tested at 6 and 12 months of 
age. Approximately 700 were reassessed at 18 
and 24 months of age and again between 3 and 
5 years of age (Gladen et al. 1988; Gladen and 
Rogan 1991).

Michigan. More than 8,000 women who 
gave birth in one of four western Michigan 
hospitals in 1980–1981 were interviewed 
after delivery. Among them, women who had 
ingested ≥ 26 lbs (about 11.8 kg) or more of 
Lake Michigan fish in the 6 preceding years 
were invited to participate. The initial sample 

consisted of 313 women. Seventy-seven per­
cent reported moderate or large quantities of 
lake fish ingestion, and the other 23% were 
randomly selected from among those who 
did not report any lake fish consumption 
(Jacobson et al. 1986). Breast milk and cord 
and maternal blood samples were collected. 
Children were tested at 5 and 7 months of age, 
then again when they were 4 and 11 years old. 
At the last follow-up, the remaining sample 
size was 212.

Faroe Islands. Faroe Islands residents are 
heavily exposed to PCBs and methylmercury 
(MeHg) because of their pilot whale blubber 
and meat intake and extensive fish consump­
tion. In 1986–1987, mother–child dyads (n = 
1,022) were recruited to take part in a study 
on the effects of exposure to these contami­
nants. PCB exposure was estimated for 435 
cord tissue samples. More than 400 children 
with documented PCB exposure were tested 
at 7 years of age (Grandjean et al. 2001). 

Germany. Between 1993 and 1995, 
171 mother–child dyads were recruited in 
three Düsseldorf hospitals. Cord blood and 
maternal milk samples were collected to 
determine PCB exposure. Despite high PCB 
levels found, the source of exposure is not 
documented. Children were tested at 7, 18, 
30, and 42 months of age. At the 42-month 
follow-up, the remaining number of children 
was 91 (Walkowiak et al. 2001).

Netherlands. The Netherlands cohort 
study was performed in the Groningen and 
the Rotterdam areas, where consumption 
of dairy products and meat were the main 
sources of PCB exposure (Patandin et  al. 
1999a). Half the women recruited breast-
fed their child for at least 6 weeks; the other 
half preferred formula feeding. Cord blood, 
maternal blood, and breast milk samples were 
collected. Various dioxins and furans were ana­
lyzed in the biologic samples. Children were 
tested at 3, 7, 18, and 42 months of age, and 
again at 6.5 and 9 years. Of the 418 infants 
recruited at birth, data were available for 376 
at 6.5 years of age (Vreugdenhil et al. 2002). 
The 9-year assessment included 83 children 
from Rotterdam (Vreugdenhil et al. 2004a).

Oswego. The Oswego Newborn and Infant 
Development Project is a prospective longitudi­
nal study conducted in the state of New York, 
USA. This study examined the behavioral effects 
of pre- and perinatal exposure to PCBs and 
other persistent organic contaminants (Stewart 
et al. 2000). The consumption of contaminated 
Lake Ontario fish was the source of PCB expo­
sure. Cord blood, placenta, and breast milk 
samples were collected. MeHg, lead, dichloro­
ethylene, hexachlorobenzene, and mirex lev­
els were also documented. Child assessments 
were conducted at 6, 12, 38, and 54 months of 
age and again at 8 and 9.5 years of age. From 
the 309 initial participants, about 200 children 
were tested at the last follow-up phase (Stewart 
et al. 2008).

Nunavik. Between November 1995 and 
March 2001, pregnant Inuit women from 
the three largest communities of the Hudson 
Bay coast (Northern Québec, Canada) were 
invited to participate in the Environmental 
Contaminants and Child Development 
Study. PCBs, other chlorinated pesticides, 
MeHg, lead, polyunsaturated fatty acids, and 
selenium levels were estimated from cord 
blood, maternal blood and hair, and breast 
milk samples (Muckle et al. 2001). More than 
190 infants were tested at 6 and 12 months 
of age. At 66 months of age, between 1999 
and 2001, an additional 110 children under­
went neuromotor and neurophysiologic test­
ing (Després et al. 2005; Saint-Amour et al. 
2006). These children were initially part of 
the Cord Blood Monitoring Program, aimed 
at documenting levels of exposure to environ­
mental contaminants in the Inuit population 
of Northern Québec (Muckle et al. 1998). 
The same contaminant and nutrient levels as 
those from the preceding study were analyzed 
from cord blood samples.

Collaborative Perinatal Project. The 
Collaborative Perinatal Project (CPP) is a 
longitudinal study that followed the develop­
ment of > 50,000 children born between 1959 
and 1966 in the United States. About 42,000 
pregnant women were recruited in 12 hospi­
tals from 11 different cities across the country. 
Forty years later, data from this study were 

Table 1. PCB exposure in the different selected birth cohort studies. 

Cohorta	 Initial no.	 Birth year	 Source of exposure	 Median PCB-153 (ng/g fat)b	 Reference

Hokkaido	 135	 2002–2004	 Fish	 23	 Nakajima et al. 2006
Oswego	 309	 1991–1994	 Fish	 40	 Darvill et al. 2000
North Carolina	 859	 1978–1982	 Unspecific	 80	 Rogan et al. 1986b
Netherlands	 418	 1990–1992	 Dairy products, meat	 100	 Patandin et al. 1999b
Nunavik (1st)	 175	 1995–1998	 Fish, marine mammals	 100	 Muckle et al. 2001
Michigan	 313	 1980–1981	 Fish	 120	 Schwartz et al. 1983
Germany	 171	 1993–1995	 Not specified	 140	 Winneke et al. 1998
CPP	 1,207	 1959–1965	 Unspecific	 140	 Daniels et al. 2003
Faroe Islands	 435	 1986–1987	 Fish, marine mammals	 450c	 Grandjean et al. 2001

CPP, Collaborative Perinatal Project.
aThe cohorts are presented in ascending order of median prenatal PCB-153 concentration. bEstimated median of PCB-153 levels in maternal serum (Longnecker et al. 2003; Nakajima 
et al. 2006). cThis value was estimated from 173 maternal serum specimens collected in the second Faroese birth cohort (children born 8 years after the first Faroese cohort considered 
in the present article). 
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used to assess the effects of PCB exposure on 
child development (Daniels et al. 2003; Gray 
et al. 2005). More than 1,000 children were 
selected among those born singleton and for 
whom PCB levels in maternal blood were doc­
umented. Cognitive outcomes have been stud­
ied in relation to PCB exposure at 8 months 
and at 4 and 7 years of age. Analyses at 7 years 
of age included nearly 900 participants.

Hokkaido. The Hokkaido Study on 
Environment and Children’s Health evalu­
ated the effects of prenatal PCB and dioxins 
exposure on child development (Nakajima 
et al. 2006). Pregnant women were recruited 
between July 2002 and July 2004 in a Sapporo 
hospital in Japan. Maternal blood samples 
were analyzed for PCB exposure arising mainly 
from fish consumption. To date, 135 infants 
have been tested at 6 months of age.

Results
General cognitive abilities. Infant develop-
ment. Table 2 summarizes the results for 
the six studies in which the Bayley Scales of 
Infant Development (Bayley 1969, 1993) 
was used. This examination provides two 
main scores: the Mental Development Index 
(MDI) and the Psychomotor Development 
Index (PDI). The items of the MDI com­
prise memory, habituation, problem solv­
ing, first number concepts, generalization, 
classification, vocalizations, language, and 
social skills (Bayley 1993). Only the German 
study reported a significant decrease in MDI 
score as a function of maternal breast milk 
levels of PCBs at 2 weeks postpartum, which 
may be considered an index of prenatal expo­
sure, because it reflects maternal body bur­
dens during pregnancy. The German and 
CPP cohorts were the most highly exposed 
cohorts. These results suggest that either the 
effects on MDI were observable only beyond 
a certain threshold of exposure or that MDI 
is not sensitive enough to detect subtle effects 
of PCBs. The PDI assesses control of the 
gross and fine muscle groups. The PDI is 
considered here because mental and motor 
functioning during infancy are likely to be 
interdependent (correlations between PDI 
and MDI range from 0.24 to 0.72 between 
3 and 30 months of age) (Bayley 1993). Two 
studies of six—those from North Carolina 
and Germany—suggested persistent effects of 
PCB exposure on PDI score. 

Child IQ. Results for IQ tests during 
childhood are presented in Table 3. Out of 
the nine birth cohort studies, six used IQ-type 
tests, and four of those reported a lower IQ 
score as a function of in utero exposure to 
PCBs. Thus, most studies suggest that pre­
natal exposure to PCBs affects the develop­
ment of general cognitive competence. In the 
Netherlands, PCB exposure is related to lower 
score of general cognitive abilities in children 

born to younger mothers and parents with 
lower verbal IQ only, suggesting that parental 
characteristics and home environment might 
moderate the effects of the pollutant on cog­
nitive development (Vreugdenhil et al. 2002). 
Furthermore, as depicted in Table 3, Verbal 
but not Performance IQ was affected in both 
the Michigan and the Oswego cohorts when 
assessed during late childhood. These results 
suggest long-lasting effects on verbal func­
tions, whereas visual–spatial functions may 
be less sensitive to prenatal PCB exposure. 
This assumption must be explored in more 
detail using assessments of specific verbal and 
visual–spatial skills. 

Verbal versus visual–spatial skills. Table 4 
summarizes the results obtained with tests 
of specific verbal functions. The grouping 
of results suggests that verbal functions par­
ticularly could be affected by PCB exposure. 
Vocabulary and verbal comprehension, both 
highly related to language skills, have been 
consistently associated with prenatal PCB 
exposure in all cohorts in which they were 
part of the study design. However, in the 
Faroe Islands, the association between expo­
sure and vocabulary was no longer significant 
when MeHg was included in the statistical 
model. In the Michigan study, reading com­
prehension was affected by PCB exposure 
among 11-year-old children. Furthermore, 

higher-level processing of verbal abilities—
verbal abstraction—has also been negatively 
related to prenatal PCBs at 11 years of age. 
Unfortunately, this finding was not replicated 
with the Faroese cohort.

Visual–spatial abilities include functions 
that are relatively independent from lan­
guage and long-term memory. Associations 
between prenatal PCB exposure and specific 
visual–spatial functions are reported in four 
cohorts (Table 4). Measures of visuo-motor 
integration, mental rotation, and visual dis­
crimination failed to show association with 
PCB exposure in the Michigan, Netherlands, 
and Faroese studies. On the other hand, a 
PCB effect on visuo-motor integration was 
reported in Oswego. However, this effect was 
observed at 3 years of age and was not repli­
cated when children were tested again a year 
and half later. Altogether, these results sup­
port the assumption that verbal functions, 
notably vocabulary and verbal comprehen­
sion, are more likely to be affected by prenatal 
PCB exposure than visual–spatial functions. 

Memory. Associations between PCB expo­
sure and various memory functions are shown 
in Table 5. In the Oswego and Michigan 
studies, effects of prenatal PCB exposure on 
visual recognition memory were observed 
during the first year of life with the Fagan 
Test of Infant Intelligence, but no effect was 

Table 2. Study results for mental and psychomotor development assessed with the Bayley Scales of Infant 
Development.

	 Effect
Cohorta	 Age (months)	 MDI	 PDI	 Reference

Hokkaido	 6	 –	 –	 Nakajima et al. 2006
North Carolina	 6, 12, 18, 24	 –, –, –, –	 ↓, ↓, –, ↓	 Gladen et al. 1988; Rogan and Gladen 1991
Netherlands	 3, 7, 18	 –, –, –	 ↓, –, –	 Koopman-Esseboom et al. 1996
Michigan	 5	 –	 –	 Jacobson et al. 1986
Germany	 7, 18, 30	 ↓b, –c ,↓b	 –, ↓b,↓b	 Winneke et al. 1998; Walkowiak et al. 2001
CPP	 8	 –	 –	 Daniels et al. 2003

Abbreviations: ↓, statistically significant decreased performance on the measure; –, absence of significant effect. 
aCohorts are presented in ascending order of median prenatal PCB exposure. bThese effects are in relation to the sum of 
PCBs 138, 153, and 180 in breast milk (2 weeks postpartum) rather then in cord plasma. cA negative association between 
breast milk PCB levels and MDI score approaches statistical significance (p = 0.06)

Table 3. Study results for IQ-type tests.

					     Nonverbal/
Cohorta	 Age (years)	 Test	 IQtotal	 Verbal IQ	 Performance IQ	 Reference

Oswego	 3	 MSCA	 ↓	 –	 ↓	 Stewart et al. 2003b
	 4.5	 MSCA	 –	 –	 –	 Stewart et al. 2003b
	 9	 WISC-III	 ↓	 ↓	 –	 Stewart et al. 2008
North Carolina	 3–5	 MSCA	 –	 –	 –	 Gladen and Rogan 1991
Netherlands	 3.5	 K-ABC	 ↓b			   Patandin et al. 1999b
	 6.5	 MSCA	 ↓c			   Vreugdenhil et al. 2002
Michigan	 4	 MSCA	 –	 ↓	 –	 Jacobson et al. 1990
	 11	 WISC-R	 ↓	 ↓	 –	 Jacobson and Jacobson 1996
Germany	 3.5	 K-ABC	 ↓			   Walkowiak et al. 2001
CPP	 4	 Stanford-Binet	 –			   Gray et al. 2005
	 7	 WISC	 –	 –	 –	 Gray et al. 2005

Abbreviations: ↓, statistically significant decreased performance on the measure; –, absence of significant effect. Tests: 
K-ABC, Kaufman Assessment Battery for Children (Overall Cognitive Scale; Melchers and Preus 1994; Neutel et al. 1996); 
MSCA, McCarthy Scales of Children’s Abilities (McCarthy 1972; Van Der Meulen and Smorkovsky 1985); Stanford-Binet 
(Broman et al. 1975); WISC, Wechsler Intelligence Scales for Children (Wechsler 1949, 1974, 1991).
aCohorts are presented in ascending order of median prenatal PCB exposure. bDecrease is significant among non-breast-fed 
children only. cDecrease is significant in children born of younger mothers and parents with lower verbal IQ scores only. 
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observed in the German study. Visual rec­
ognition memory was also affected at 4 years 
of age in the Michigan study. On the other 
hand, in the Netherlands, the delayed repro­
duction of the Rey Complex Figure was unaf­
fected in children 9 years of age. The apparent 
contradictory results between the Michigan 
and the Netherlands studies might first be 
explained by the age difference. Second, both 
studies differed with regard to the functions 
assessed in both tests: The Sternberg Memory 
task (Michigan) has time pressure and requires 
sustained attention and working memory 
more manifestly than the Rey Complex Figure 
delayed copy (Netherlands). Moreover, the 

Sternberg Memory has a strong verbal compo­
nent, whereas the Rey Complex Figure essen­
tially relies on visual–spatial memory.

Episodic memory refers to contextualized 
memories of one’s own experiences and learn­
ing (Lezak et al. 2004; Mazeau 2003). For 
example, one can remember a day spent in 
Rome and the name of a person met on that 
day, as well as what was for dinner. Such con­
textualized memories were assessed in two of 
the nine selected studies: the Dutch and the 
Faroese. In the Dutch study, the most severely 
exposed children were not different from the 
least exposed on the Auditory-Verbal Learning 
Test, which contained both immediate and 

delayed recalls of verbal information. The chil­
dren of the Faroese cohort were assessed with 
the California Verbal Learning Test, a test of 
list learning and verbal memory comparable 
to the Auditory-Verbal Learning Test. The 
absence of association between episodic mem­
ory and PCB exposure found in the Dutch 
study was corroborated in the Faroese cohort. 
Thus, episodic memory does not appear to be 
particularly affected by prenatal PCB exposure, 
despite the relatively high PCB concentrations 
observed in both cohorts. 

Whereas episodic memory is contextualized, 
semantic memory refers to the general knowl­
edge one possesses, which is disconnected from 

Table 4. Study results for verbal and visual–spatial functions.

	 Cohorta	 Age (years)	 Effect	 Measurement	 Reference

Verbal functions	
  Vocabulary	 Oswego	 3	 ↓	 MSCA Word Knowledge	 Stewart et al. 2003b
		  4.5	 –	 MSCA Word Knowledge	 Stewart et al. 2003b
	 Michigan	 4	 –	 PPVT	 Jacobson et al. 1990
		  11	 ↓	 WISC-R Vocabulary	 Jacobson and Jacobson 1996
		  11	 ↓	 WRMT Word Comprehension	 Jacobson and Jacobson 1996
	 Faroe Islands	 7	 –b	 BNT	 Grandjean et al. 2001
  Verbal comprehension 	 Netherlands	 3.5	 ↓c	 RLDS	 Patandin et al. 1999b
  Reading comprehension	 Michigan	 11	 ↓	 WRMT Reading Comprehension	 Jacobson and Jacobson 1996
  Verbal abstraction 	 Michigan	 11	 ↓	 WISC-R Similitudes	 Jacobson and Jacobson 1996
	 Faroe Islands	 7	 –	 WISC-R Similitudes	 Grandjean et al. 2001
Visual–spatial functions	
  Visuo-motor integration	 Oswego	 3	 ↓	 MSCA Block Building	 Stewart et al. 2003b
		  4.5	 –	 MSCA Block Building	 Stewart et al. 2003b
	 Michigan	 4	 –	 BTVMI	 Jacobson et al. 1990
	 Netherlands	 9	 –	 Rey Complex Figure Test copy	 Vreugdenhil et al. 2004a
	 Faroe Islands	 7	 –	 WISC Block Design	 Grandjean et al. 2001
  Mental rotation	 Michigan	 11	 –	 Mental Rotation	 Jacobson and Jacobson 2003
  Visual discrimination	 Michigan	 4	 –	 KMFF	 Jacobson et al. 1992

Abbreviations: ↓, statistically significant decreased performance on the measure; –, absence of significant effect. Tests: BNT, Boston Naming Test (Kaplan et al. 1983); BTVMI, Beery 
Test of Visual Motor Integration (Beery 1967); KMFF, Kagan Matching Familiar Figures (Kagan 1965), Mental Rotation (Kail 1986); PPVT, Peabody Picture Vocabulary Test (Dunn and Dunn 
1981); Rey Complex Figure Test copy (Rey 1941); RLDS, Reynell Language Development Scales (Van Eldik et al. 1995); WRMT, Woodcock Reading Mastery Tests (Woodcock 1987). 
aCohorts are presented in ascending order of median prenatal PCB exposure. bDecreased performance as a function of prenatal PCB exposure was significant before controlling for 
MeHg. cEffect is significant among non-breast-fed children only. 

Table 5. Study results on verbal and visual memory.

	 Age	
Assessed construct	 Cohorta 	 Months	 Years	 Effect	 Measurement	 Reference

Visual recognition	 Oswego	 6, 12		  ↓	 FTII	 Darvill et al. 2000	
	 Michigan	 7		  ↓	 FTII	 Jacobson et al. 1985
	 Michigan		  4	 ↓	 Sternberg Memoryb	 Jacobson et al. 1992
	 Germany	 7		  –	 FTII	 Winneke et al. 1998
Visual reproduction	 Netherlands		  9	 –	 Rey Complex Figure Test recall	 Vreugdenhil et al. 2004a	
Episodic memory	 Netherlands		  9	 –	 AVLT long delay recall	 Vreugdenhil et al. 2004a
	 Faroe Islands		  7	 –	 CVLT long delay recall	 Grandjean et al. 2001
Semantic memory	 Michigan		  11	 ↓	 WISC Information	 Jacobson and Jacobson 1996
Short-term memory	 North Carolina		  3–5	 –	 MSCA Memory Scalec	 Gladen and Rogan 1991
	 Netherlands		  6.5	 ↓d	 MSCA Memory Scalec	 Vreugdenhil et al. 2002
			   9	 –	 AVLT short delay recall	 Vreugdenhil et al. 2004a
	 Michigan		  4	 ↓	 MSCA Memory Scale	 Jacobson et al. 1990 
			   11	 ↓e	 WISC-R Digit Span	 Jacobson and Jacobson 2003
			   11	 –	 Corsi Spatial Span	 Jacobson and Jacobson 2003
			   11	 ↓	 Sternberg Memory	 Jacobson and Jacobson 2003
	 Faroe Islands		  7	 –	 WISC-R Digit Span Forward	 Grandjean et al. 2001
			   7	 –	 CVLT short delay recall	 Grandjean et al. 2001

Abbreviations: ↓, statistically significant decreased performance on the measure; –, absence of significant effect. Tests: AVLT, Auditory-Verbal Learning Test (Kalverboer and Deelman 
1964); Corsi Spatial Span (Corsi 1972); CVLT, California Verbal Learning Test (Delis et al. 1994); FTII, Fagan Test of Infant Intelligence (Fagan and McGrath 1981); Sternberg Memory [adap-
tation from Sternberg (1969)].
aCohorts are presented in ascending order of median prenatal PCB exposure. bThis adaptation of the Sternberg Memory Test emphasizes visual recognition memory rather than working 
memory. cAuthors do not report associations with the different subtests of the Memory Scale. dEffect significant in children of younger mothers and parents with lower verbal IQ scores 
only. eEffect significant in non-breast-fed children only. 
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its encoding context (e.g., Rome is the capital 
of Italy) (Lezak et al. 2004). Although this type 
of memory was assessed only in the Michigan 
study, decreased performance as a function of 
prenatal PCB exposure was observed.

Finally, short-term memory has been 
assessed in four different PCB cohorts with 
different measures and at different ages. The 
Memory Scale index of the McCarthy Scales of 
Children’s Abilities (MSCA; McCarthy 1972) 
was administered in the North Carolina, the 
Netherlands, and the Michigan studies. This 
index integrates scores from four subtests, each 
assessing different processes related to short-
term and working memory. The Memory 
Scale index decreased as a function of pre­
natal PCB exposure in the Netherlands and 
Michigan. The association found in Michigan 
was attributed to two specific subtests involv­
ing the auditory modality, whereas results on 
specific subtests were not reported for North 
Carolina and the Netherlands studies. PCB 
exposure did not affect learning a list of words 
in the Netherlands and the Faroese studies. 
The performance on numeric span measures 
was altered by PCB exposure at 4 and 11 years 
of age in Michigan, whereas no such alteration 
was found for the forward condition in the 
Faroe Islands at 7 years of age. Regrettably, 
the Michigan study did not report forward 
and backward spans separately. Because these 
two conditions are thought to reflect different 
processes [the forward condition is thought to 
assess short-term information retention and 
attention allocation, whereas the backward 
condition additionally involves the executive 
component of working memory (Lezak et al. 
2004)], it is not possible to currently identify 
what caused the decrease in performance on 
the numeric span measures. 

The analysis of the effects of prenatal 
exposure to PCBs on memory components 
reveals that consistent effects were found 
on visual recognition memory tasks with 
young children. Although effects on long-
term verbal memory are not evident, some 

data suggest that short-term verbal memory 
is affected by this contaminant. However, the 
effects could also be the result of a decreased 
attention allocation or poorer executive func­
tioning, both processes being involved during 
the completion of tasks.

Attention and executive functions. Attention 
and executive functions (EFs) are unique aspects 
of human cognition, because they modulate all 
other cognitive functions. For example, atten­
tion allocation is required to learn new infor­
mation, and sustained attention is necessary to 
perform optimally on a 2-hr neuropsychologi­
cal battery testing. EFs are crucial for learning 
and retrieval strategies and are solicited to adapt 
to new testing situations. Because most cog­
nitive functions are subordinated to attention 
and EFs, impairment of these functions might 
indirectly affect other components of cognitive 
functioning as well. 

Table 6 summarizes the effects of pre­
natal PCB exposure on attentional functions. 
Several aspects of attention can be identi­
fied. First, selective or focused attention is the 
capacity to highlight the one or two impor­
tant stimuli or ideas being dealt with while 
suppressing awareness of competing distract­
ers (Lezak et al. 2004). In Michigan, perfor­
mance on the Stroop Color-Word test, which 
requires the capacity to focus attention on 
the color of a word while ignoring the written 
name of the color, was not associated with 
prenatal PCB exposure in 11-year-old chil­
dren. Nevertheless, in these children, PCB 
exposure was related to the number of omis­
sion errors on a digit cancellation test, which 
requires visual selective attention as much as 
visual scanning and processing speed. 

Processing speed is a central aspect of 
attentional functioning. Decreased speed 
of information processing can have broad-
ranging effects on attentional activities 
(Ponsford and Kinsella 1992; Spikman et al. 
1996). Processing speed was assessed using 
reaction times during the completion of a cog­
nitive task in the Michigan, Netherlands, and 

Faroe Islands cohorts. Slower reaction times 
as a function of prenatal PCB exposure were 
observed in most assessments. The effects of 
PCB exposure on processing speed were also 
tested with neurophysiologic measures. The 
Netherlands study used an auditory oddball 
paradigm to assess the P300 wave of the event-
related potentials—a positive deflection of the 
electroencephalograph voltage occurring about 
300 milliseconds after the detection of target 
stimuli—at the 9-year assessment (Vreugdenhil 
et al. 2004b). Latency of this component is 
thought to reflect stimulus evaluation duration 
independently of response-associated processes 
(Kutas et al. 1977; McCarthy and Donchin 
1981). Higher prenatal PCB exposure was 
related to delayed P300 latency, which is con­
sistent with behavioral data from other studies. 
The same result had previously been observed 
among Yu-Cheng children severely exposed to 
PCBs in utero who were assessed with a simi­
lar P300 protocol between 7 and 12 years of 
age (Chen and Hsu 1994). Those results sug­
gest that speed of information processing is an 
aspect of attention particularly susceptible to 
impairment by prenatal PCB exposure.

Another aspect of attention is the capac­
ity to maintain an attentional activity over a 
prolonged period of time, a concept referred 
to as sustained attention (Lezak et al. 2004). 
It is measured by observing the evolution 
in performance over time on a given task. 
Performance on the Continuous Performance 
Test, a well-known task of sustained atten­
tion, did not decline over time as a function 
of prenatal PCB exposure in the Oswego, 
Michigan, and Faroese cohorts. However, 
the fluctuation in reaction times of 9-year-old 
highly exposed Dutch children was greater 
than among less-exposed children on the 
Simple Reaction Time Test, a similar task. 
The Dutch study is thus the only study sug­
gesting a PCB effect on sustained attention. 

EFs are recruited for controlled action 
in new or complex situations, especially 
when well-learned, routine action schemas 

Table 6. Results for attention.

Assessed construct	 Cohorta	 Age (years)	 Effect	 Measurement	 Reference

Selective attention	 Michigan	 11	 ↓	 Digit Cancellation omission errors	 Jacobson and Jacobson 2003
		  11	 –	 Stroop Color-Word completion time	 Jacobson and Jacobson 2003
Processing speed	 Michigan	 4	 ↓	 KMFF reaction time	 Jacobson et al. 1992
		  4, 11	 –	 CPT reaction time	 Jacobson and Jacobson 2003
		  11	 ↓	 Mental Rotation reaction time	 Jacobson and Jacobson 2003
	 Netherlands	 9	 ↓	 SRTT reaction time	 Vreugdenhil et al. 2004a
		  9	 ↓	 P300 latency	 Vreugdenhil et al. 2004b
	 Faroe Islands	 7	 –b	 CPT reaction time	 Grandjean et al. 2001
Sustained attention	 Oswego	 4.5	 –	 CPT	 Stewart et al. 2003a
		  8, 9.5	 –	 CPT	 Stewart et al. 2005
	 Netherlands	 9	 ↓	 SRTT reaction time variations	 Vreugdenhil et al. 2004a
	 Michigan	 4, 11	 –	 CPT	 Jacobson and Jacobson 2003
	 Faroe Islands	 7	 –	 CPT	 Grandjean et al. 2001

Abbreviations: ↓, statistically significant decreased performance on the measure; –, absence of significant effect. Tests: CPT, Continuous Performance Test (Letz and Baker 1988; 
Rosvold et al. 1956); SRTT, Simple Reaction Time Test (Letz 1994).
aCohorts are presented in ascending order of mean prenatal PCB exposure. bDecreased performance as a function of prenatal PCB exposure was significant before documenting rela-
tive effect of MeHg.
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are no longer adequate to meet the demands 
of the task (Norman and Shallice 1986). In 
the current review, four aspects of EFs were 
considered: response inhibition, planning, 
set shifting, and the executive component 
of working memory. Associations between 
prenatal PCB exposure and these functions 
are summarized in Table 7. Poorer response 
inhibition has been consistently related to 
prenatal PCB exposure in both the Michigan 
and the Oswego cohorts. The significant effect 
reported in Oswego, one of the least-exposed 
cohorts, suggests that this aspect is likely to be 
very sensitive to PCB exposure. Effects on task 
planning were also observed in both cohorts 
that documented this EF (Netherlands and 
Michigan). However, in the Netherlands, 
planning effects were reported using the Tower 
of London test but not the copy of the Rey 
Complex Figure. These different tasks solicit 
different processes. For instance, the Tower of 
London test is more likely to require response 
inhibition (Miyake et al. 2000). Finally, set 
shifting and working memory, documented 
in 11-year-old children from the Michigan 
cohort, were affected by PCB exposure in 
non-breast-fed children. Altogether, these 
observations may suggest that EFs are par­
ticularly affected by prenatal PCB exposure. 
Replication of these results is needed before 
definite conclusions can be drawn. 

Sensory and motor functions. Performance 
on many neurobehavioral cognitive tasks can be 
affected by sensory impairments or motor dif­
ficulties. It thus appears important to make sure 
that the aforementioned PCB effects are not 
the indirect consequences of alterations in those 
modalities. This is the object of the final step of 
the present neuropsychological analysis. Studies 
documenting effects of PCB exposure on sen­
sory functions are summarized in Table 8. 
Results suggest that it is possible that prenatal 
PCB exposure alters the auditory system in a 
very subtle manner. However, this effect, if 
present, is unlikely to be strong enough as to 
influence performance on neurobehavioral tasks 
requiring the auditory modality (e.g., language 
assessments and auditory spans). 

Results from psychomotor development 
and motor functioning assessments are pre­
sented in Table 9. The global portrait of 
results suggests that motor functions during 
childhood are not particularly affected by 
prenatal PCB exposure. Thus, decreased per­
formance on neurobehavioral tests requiring 
physical (e.g., hand, fingers) response (e.g., 
Continuous Performance Test, Tower of 
London) is more likely to be related to actual 
cognitive impairments rather than to specific 
motor dysfunction.

Discussion
The present review suggests that prenatal expo­
sure to PCBs is associated with a fairly specific 
profile of cognitive impairments in children. 
Among the cognitive functions assessed in the 
different studies, detrimental effects have been 
established more clearly for EFs. In many cases, 
negative effects have also been observed for 
speed of information processing, verbal abili­
ties, and visual recognition memory. However, 
there is relatively little evidence of effects on 
visual–spatial abilities, episodic memory, and 
sustained attention. Effects appear to be inde­
pendent of sensory and motor functions. More 
data are needed to document effects on other 
cognitive functions. 

Most consistent results across studies sug­
gest particular vulnerability of EFs to prenatal 
PCB exposure. Different studies have found 
that efficiency in planning, executive working 
memory, set shifting, and especially response 
inhibition decrease as a function of levels of 
PCBs. Because the prefrontal structures of the 
brain are thought to be of particular impor­
tance in these higher-order functions (Jurado 
and Rosselli 2007), one can hypothesize that 
the development of the prefrontal cortex is 
affected by PCB exposure. This hypothesis is 
in accordance with animal studies that showed 
disturbance in dopamine levels of the prefron­
tal cortex (Seegal et al. 2005) in rats exposed 
to PCB congeners in utero. However, other 
structures are also involved in the execution 
of controlled behaviors in humans (Pillon and 
Dubois 2005), and specific injury to prefrontal 

cortex alone is not likely to explain other partic­
ularities of the cognitive profile associated with 
prenatal PCB exposure (e.g., decreased process­
ing speed; Vreugdenhil et al. 2004b). Thus, 
direct evidence of brain structural or functional 
alterations could help in relating prenatal PCB 
exposure to prefrontal cortex integrity (e.g., 
Cecil et al. 2008; Jonkman et al. 2007). EFs 
are sensitive to several disorders such as atten­
tion deficit and hyperactivity disorder, autism, 
and obsessive-compulsive disorder (Barkley 
1997; Happé et al. 2006; Hughes et al. 1994; 
Olley et al. 2007), and to other neurotoxicants 
such as lead, marijuana, and cocaine (Canfield 
et al. 2004; Fried and Smith 2001; Mayes et al. 
2005). This greater sensitivity to tasks designed 
to assess EFs may be related to their dependence 
on the integrity of multiple neural systems. Use 
of more focused tests would further our under­
standing of the specific end points responsible 
for the aforementioned deficits. In addition, 
failure to observe detrimental effects of PCB 
exposure on child cognition in the CPP, North 
Carolina, and Faroese cohorts might be related 
to the absence of specific EF assessments in 
those studies. 

Although the effects of PCBs on the 
speed of information processing are strongly 
suggested by the present review, some ques­
tions still remain for another central aspect of 
attention—selective attention. First, only the 
Michigan study used specific tests of selec­
tive attention, and the results obtained were 
inconsistent. Second, the present literature 
review did not succeed in discriminating the 
relative contribution of attention allocation, 
working memory, and short-term memory to 
the effects observed on memory performance. 
For the moment, one can hypothesize that 
the documented effects on EFs are responsible 
for effects observed on numeric span subtests 
when the backward condition is used.

Other specific impairments caused by 
prenatal PCB exposure are highlighted by 
the distinction between verbal and visual-
spatial functions; in most studies, the former 
are affected, whereas the latter are not. The 
distinction between verbal and visual–spatial 

Table 7. Study results on EF.

EF	 Cohorta	 Age (years)	 Effect	 Measurement	 Reference	

Response inhibition	 Oswego	 4.5	 ↓	 CPT commission errors	 Stewart et al. 2003a
		  8, 9.5	 ↓	 CPT commission errors	 Stewart et al. 2005
		  9.5	 ↓	 DRL inter-response times	 Stewart et al. 2006
	 Michigan	 4	 –	 CPT commission errors	 Jacobson and Jacobson 2003
		  4	 ↓	 Sternberg Memory errors of commission	 Jacobson and Jacobson 2003
		  11	 ↓b	 CPT commission errors	 Jacobson and Jacobson 2003
Planning	 Netherlands	 9	 ↓	 Tower of London	 Vreugdenhil et al. 2004a
		  9	 –	 Rey Complex Figure Test copy strategy	 Vreugdenhil et al. 2004a
	 Michigan	 11	 ↓	 WISC-R Labyrinth	 Jacobson and Jacobson 1996
Set shifting	 Michigan	 11	 ↓b	 WCST perseverative errors	 Jacobson and Jacobson 2003
Working memory	 Michigan	 11	 ↓b	 WISC-R Arithmetic	 Jacobson and Jacobson 2003

Abbreviations: ↓, statistically significant decreased performance on the measure; –, absence of significant effect. Tests: DRL, Differential reinforcement of low rates schedules [based 
on Sagvolden et al. (1998)]; Tower of London (Shallice 1982); WCST, Wisconsin Card Sorting Test (Grant and Berg 1948); WISC, Wechsler Intelligence Scale for Children (Wechsler 1991).
aCohorts are presented in ascending order of median prenatal PCB exposure. bDecrease is significant only in non-breast-fed children. 
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functions is traditionally made in neuropsy­
chology, notably to evaluate the differential 
integrity of each cerebral hemisphere (Samson 
2005). However, some explanations other 
than specific effects on verbal hemisphere can 
be offered. For instance, verbal measures such 
as vocabulary and reading tests are more likely 
to be influenced by socioeconomic factors 
than are visual–spatial measures. If a given 
socioeconomic factor is related to sources of 
PCB exposure (e.g., fish products) in a given 
population, then specific associations between 
PCB exposure and lower scores on verbal 
tests could also reflect differences in socioeco­
nomic conditions. Researchers should thus 
seek the verbal tasks that are less likely to be 
influenced by such confounding factors, such 
as measures of phonologic processes.

Although the present cognitive analysis 
highlights the effects of prenatal exposure 
to PCBs, inconsistencies between studies 
still persist. Many factors may explain these 
inconsistencies. First, it is possible that PCB 
exposure was not high enough to produce 
statistically significant effects in some cohorts. 
Strangely, though, differences in exposure 
severity do not appear to account for observed 
inconsistencies. Thus, studies reporting the 
larger number of significant effects on cog­
nitive functions were not the most highly 
exposed cohorts. This is particularly true in 
the case of Oswego, which found consistent 
impairments on cognitive functions although 
it was among the least PCB-exposed cohorts. 

It is also possible that co-exposure to other 
contaminants is accountable for inconsistencies 

across studies. Strong association between PCBs 
and another contaminant (e.g., MeHg) makes 
it less likely to observe independent relation­
ships between PCBs and cognitive outcomes 
after documenting and statistically controlling 
for the other contaminant. This might explain 
the results observed in the Faroese, where statis­
tical control for MeHg altered the associations 
between PCB exposure and cognitive outcomes 
(Grandjean et al. 2001). Exposure to another 
contaminant highly related to PCB levels might 
also be responsible for the observed cognitive 
effects if exposure to this contaminant is not 
documented and accounted for in statistical 
designs. However, if this were the case here, 
study results would diverge largely depending 
on the source of exposure in the population 
under study. In populations in which expo­
sure arises from fish consumption (Michigan 
and Oswego), coexisting contaminants (e.g., 
MeHg) differ from those found in popula­
tions for whom exposure arises from dairy 
products (Netherlands). The consistent results 
obtained from those three cohorts suggest 
that the impairments associated with PCB 
exposure are more likely to be attributable 
to PCBs per se. In addition, statistical con­
trol for coexisting contaminants did not alter 
the relationships between PCB exposure and 
cognitive outcomes in Oswego (Stewart et al. 
2003b, 2005, 2006, 2008).

Other explanations could be offered 
regarding inconsistent findings across cohort 
studies. Of particular importance is the pres­
ence of essential nutrients that may pro­
mote brain development in the sources of 

PCB exposure. This may be the case when 
exposure arises from fish products, which 
are also potential sources of omega-3 fatty 
acids (Costa 2007). If we assume that such 
nutrients have beneficial or protective effects 
on cognitive development (Koletzko et al. 
2008), it is conceivable that the associations 
between prenatal PCB exposure and cogni­
tive outcomes are stronger than what was 
actually found in fish-eating populations. In 
the Faroe Islands, attempts to control for the 
beneficial effects of fish consumption dur­
ing pregnancy increased the effects of MeHg 
on cognition (Budtz-Jorgensen et al. 2007), 
but no such control was applied for PCBs. 
The Nunavik study, for which levels of nutri­
ents are documented, will provide a unique 
opportunity in the near future to learn more 
about the relationships between nutrients and 
contaminants. Another explanation that can­
not be ruled out is that different PCB mix­
tures with different congeners across studies 
result in different outcomes. As emphasized 
by Schantz et al. (2003), future studies will 
have to address this issue. 

Age at assessment can also influence the 
outcomes of birth cohort studies. Although 
most cohort studies did not find significant 
effects of prenatal PCB exposure on the global 
mental development of infants, effects on 
global IQ tests were consistently observed dur­
ing childhood in most studies (for example, 
effects on IQ were found in the Oswego, 
Netherlands, Michigan, and German studies). 
An explanation for such findings might be 
that infant mental development measures have 
weaker psychometric properties than child­
hood IQ tests in terms of reliability and valid­
ity, especially for predictive validity of later 
cognitive functioning (Bayley 1993; Wechsler 
1991). In addition, because the maturation of 
certain brain areas, notably the prefrontal cor­
tex, lasts until late adolescence (Segalowitz and 
Davies 2004), it is possible that some effects 
appear during development, while others dis­
appear. PCBs were not related to global IQ at 
4 years of age in the Michigan cohort but were 
at age 11 years (Jacobson et al. 1990; Jacobson 
and Jacobson 1996). Similar results were 

Table 8. Study results on auditory and visual functioning.

Assessment	 Cohort	 Age (years)	 Effect	 Reference

Hearing	 CPP	 8	 –	 Longnecker et al. 2004
	 Faroe Islands	 7	 ↓a	 Grandjean et al. 2001
BAEPs	 Faroe Islands	 7	 –b	 Grandjean et al. 2001
Visual contrast sensitivity	 Faroe Islands	 7	 –	 Grandjean et al. 2001
VEPs	 Nunavik	 5	 –c	 Saint-Amour et al. 2006
	 Faroe Islands	 7	 –	 Grandjean et al. 2001

Abbreviations: ↓, statistically significant decreased performance on the measure; –, absence of significant effect; BAEPs, 
brainstem auditory evoked potentials; VEPs, visual evoked potentials.
aSignificant increase of auditory threshold in left ear only for sounds of 250 and 12,000 Hz. bDelayed latency of wave V at 20 
Hz was significant before controlling for MeHg. cP100 and N150 waves latencies were significantly delayed, and N75 to P100 
and P100 to N150 amplitudes were significantly reduced as a function of child’s PCB-153 levels in blood at 5 years of age.

Table 9. Effects of prenatal exposure to PCBs on motor function.

Motor assessment	 Cohort	 Age (years)	 Effect	 Measurement	 Reference	

Global motor	 Netherlands	 6.5 	 ↓a	 MSCA Motor Scale	 Vreugdenhil et al. 2002
	 Michigan	 4	 –	 MSCA Motor Scale	 Jacobson et al. 1990
Gross motor	 Nunavik	 5	 –	 Huttenlocher gross motor tasks	 Després et al. 2005
Fine neuromotor	 Nunavik	 5	 –	 Catsys System hand tremor	 Després et al. 2005
		  5	 –	 Catsys System postural sway	 Després et al. 2005
		  5	 –	 Catsys System reaction time	 Després et al. 2005
		  5	 –	 Rapid pointing movements	 Després et al. 2005
		  5	 –	 Rapid alternative arm movements	 Després et al. 2005
	 Faroe Islands	 7	 –	 NES-2 Finger Tapping	 Grandjean et al. 2001
		  7	 –	 NES-2 Hand-eye Coordination	 Grandjean et al. 2001

Abbreviations: ↓, statistically significant decreased performance on the measure; –, absence of significant effect. Tests: Catsys system (Danish Product Development 2000); 
Huttenlocher gross motor tasks (Huttenlocher et al. 1990); NES-2, Neurobehavioral Evaluation System (Letz and Baker 1988).
aSignificant in children with poorer environmental conditions only.
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obtained in the Oswego study (Stewart et al. 
2003b, 2008). These results outline the rele­
vance of assessing cohorts until late childhood 
and adolescence.

In two cohort studies (Netherlands and 
Michigan), impairments associated with pre­
natal PCB were more salient in non-breast-fed 
and/or in more socioeconomically disadvan­
taged children. Thus, some of the findings 
reported in this literature review might hold 
only for more vulnerable subgroups. It is pos­
sible that optimal child stimulation can help 
compensate for subtle brain insults related 
to PCB exposure (Jacobson and Jacobson 
2004), decreasing the likelihood of observ­
ing significant effects in more advantaged 
subgroups of the population. Failure to con­
trol for the appropriate vulnerability factors 
might also explain the negative findings from 
some studies. For instance, both studies that 
did not find effects on IQ (CPP and North 
Carolina) did not control for quality of par­
enting as measured by quality of home envi­
ronment and parental verbal abilities. These 
variables were included in the analyses from 
the Michigan (11-year assessment), Oswego, 
Netherlands, and Germany cohort studies, all 
of which found significant effects. We can­
not rule out the possibility that the CPP and 
North Carolina studies could have found 
PCB effects among more disadvantaged chil­
dren in those variables. Particular attention 
to this issue should be given in future studies 
when reporting results. The CPP and North 
Carolina studies were the only two studies 
to use multiple testers at multiple sites. This 
could have caused increased variability in test­
ing procedures, resulting in poorer reliability 
and reduced sensitivity of the measures.

The results of the present work can be 
used for the appropriate selection of neuro­
psychological tests in future studies of cohorts 
exposed to PCBs (or other similar organochlo­
rine compounds). With the objective of cor­
roborating the effects observed in birth cohort 
studies, we suggest that future studies sys­
tematically include the Fagan Test of Infant 
Intelligence (Fagan and McGrath 1981) dur­
ing infancy and the Continuous Performance 
Test (Conners 1995; Letz and Baker 1988) 
from childhood. These tests have been found 
to be sensitive to the neurotoxic effects of 
PCBs on several occasions. Other tests of 
EFs, such as those from the Delis-Kaplan 
Executive Function System (Delis et al. 2001) 
or Go/No-go tasks, and tests requiring pro­
cessing speed, like the Coding subtest of the 
Wechsler Intelligence Scales (Wechsler 1991), 
might also be sensitive to the presence of PCB 
effects. Further investigation of attentional 
and verbal/phonologic processes could also 
reveal pertinent information about the nature 
of the effects of prenatal PCB exposure. 
Subtests from neuropsychological assessment 

batteries used with children could be useful to 
this end. Among others, the Test of Everyday 
Attention for Children (TEA-Ch; Manly et 
al. 1999) battery is particularly well suited 
to disentangle processes required to perform 
attentional tasks, and the NEPSY (Korkman 
et al. 1998) battery has interesting subtests of 
phonologic processing. 

We also suggest that if statistical power 
is high, analyses should be performed for 
every subtest rather than only for global 
indexes, especially if using test batter­
ies such as the Wechsler Intelligence Scales 
for Children (WISC; Wechsler 1991), the 
MSCA (McCarthy 1972), and the Kaufman 
Assessment Battery for Children (K-ABC; 
Melchers and Preus 1994; Neutel et al. 1996). 
This could be accomplished with the existing 
data from the German and the Dutch cohorts, 
notably. Moreover, when using the Digit Span 
subtest (e.g., Wechsler 1991), analyses for 
both forward and backward conditions should 
be performed, because the processes involved 
for these conditions are qualitatively different. 
Even though such an approach increases the 
likelihood of making type 1 errors, it allows for 
appropriate comparison of results across stud­
ies and provides a better profile of the nature 
of the effects.

Finally, the use of complementary meth­
ods for neuropsychological assessment would 
be advantageous for the study of the neuro­
toxicity of PCBs and related compounds. 
The understanding of the brain mechanisms 
involved in the production of specific cogni­
tive impairments would be improved with 
structural and functional brain imagery stud­
ies. Event-related potentials could increase 
our understanding about the specific aspects 
of cognitive function that are impaired by 
permitting the child’s performance to be eval­
uated for specific components arrayed across 
time. Such direct measures of brain activ­
ity are also less subject to bias by cultural, 
language, and socioeconomic factors.

In summary, this review supports the 
existence of specific, detrimental effects of 
prenatal exposure to environmental levels 
of PCBs on neuropsychological functioning 
in children. EF impairments were mainly 
outlined. Failure to assess this specific aspect 
of cognition may explain why some studies 
did not find significant relationships between 
prenatal PCB exposure and cognitive devel­
opment. These effects, along with possible 
slower information processing and impair­
ments in verbal abilities and visual memory, 
can be responsible for the IQ effects observed 
in most studies. 
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